The Spacey Random Walk: A Stochastic Process for Higher-Order Data | SIAM Review | Vol. 59, No. 2 | Society for Industrial and Applied Mathematics
نویسندگان
چکیده
Random walks are a fundamental model in applied mathematics and are a common example of a Markov chain. The limiting stationary distribution of the Markov chain represents the fraction of the time spent in each state during the stochastic process. A standard way to compute this distribution for a random walk on a finite set of states is to compute the Perron vector of the associated transition matrix. There are algebraic analogues of this Perron vector in terms of transition probability tensors of higher-order Markov chains. These vectors are nonnegative, have dimension equal to the dimension of the state space, and sum to one, and they are derived by making an algebraic substitution in the equation for the joint-stationary distribution of a higher-order Markov chain. Here, we present the spacey random walk, a non-Markovian stochastic process whose stationary distribution is given by the tensor eigenvector. The process itself is a vertex-reinforced random walk, and its discrete dynamics are related to a continuous dynamical system. We analyze the convergence properties of these dynamics and discuss numerical methods for computing the stationary distribution. Finally, we provide several applications of the spacey random walk model in population genetics, ranking, and clustering data, and we use the process to analyze New York taxi trajectory data. This example shows definite non-Markovian structure.
منابع مشابه
The Spacey Random Walk: a Stochastic Process for Higher-order Data
Random walks are a fundamental model in applied mathematics and are a common example of a Markov chain. The limiting stationary distribution of the Markov chain represents the fraction of the time spent in each state during the stochastic process. A standard way to compute this distribution for a random walk on a finite set of states is to compute the Perron vector of the associated transition ...
متن کاملMultilinear PageRank
In this paper, we first extend the celebrated PageRank modification to a higher-order Markov chain. Although this system has attractive theoretical properties, it is computationally intractable for many interesting problems. We next study a computationally tractable approximation to the higher-order PageRank vector that involves a system of polynomial equations called multilinear PageRank. This...
متن کاملA Random Walk with Exponential Travel Times
Consider the random walk among N places with N(N - 1)/2 transports. We attach an exponential random variable Xij to each transport between places Pi and Pj and take these random variables mutually independent. If transports are possible or impossible independently with probability p and 1-p, respectively, then we give a lower bound for the distribution function of the smallest path at point log...
متن کاملStability of Systems with Stochastic Delays and Applications to Genetic Regulatory Networks | SIAM Journal on Applied Dynamical Systems | Vol. 15, No. 4 | Society for Industrial and Applied Mathematics
The dynamics of systems with stochastically varying time delays are investigated in this paper. It is shown that the mean dynamics can be used to derive necessary conditions for the stability of equilibria of the stochastic system. Moreover, the second moment dynamics can be used to derive sufficient conditions for almost sure stability of equilibria. The results are summarized using stability ...
متن کاملENTROPY FOR DTMC SIS EPIDEMIC MODEL
In this paper at rst, a history of mathematical models is given.Next, some basic information about random variables, stochastic processesand Markov chains is introduced. As follows, the entropy for a discrete timeMarkov process is mentioned. After that, the entropy for SIS stochastic modelsis computed, and it is proved that an epidemic will be disappeared after a longtime.
متن کامل